Kanker

  • Onderwerp starter Onderwerp starter Romagi
  • Startdatum Startdatum
een vriend van een vriend van ons is donderdagnacht overleden op 43 jarige leeftijd.

Hij had kanker wat begonnen is (volgens artsen) door verstopte/verkankerde lever- en galwegen.

(ik weet dat hij vanaf zijn 16e medicatie gebruikt heeft voor een darmaandoening. Prikkelbaar darmsyndroom of iets dergelijks)

 
Debsy,

Ik neem aan dat je doelt op het laatste stuk, onder de titel How to protect yourself from cancer? Daarin staat het volgende aan praktische richtlijnen:

- Zorg voor een optimale toevoer van sulfaat naar je bloed en weefsels, te beginnen met zoveel mogelijk blootstelling aan zonlicht.

- Eet voeding die de aanmaak en het transport van sulfaat bevordert, oftewel: eet zwavelrijke voedingsmiddelen als vlees, schaal- en schelpdieren, eieren, melk en andere zuivel, knoflook, uien en kruisbloemigen.

- Eet voedingsmiddelen die het transport van sulfaat bevorderen, zoals boekweit, gember, koudgeperste kokosolie, groente en fruit met felle kleuren, resveratrol (in rode wijn) en kurkuma (geelwortel).

- Eet bij voorkeur biologische voeding.

- Beperk je blootstelling aan giftige chemicalien tot een minimum. Probeer zoveel mogelijk tijd door te brengen aan de kust, waar de lucht fris is en rijk aan zwavel.

- Ga regelmatig in een bad met bitterzout (magnesiumsulfaat) liggen. Een natuurlijke zwavelbron is uiteraard nog beter.

Mike

 
Hai Mike!

Dank je wel maar dat stukje snapte ik juist wel. :wink:

Het stukje waarin het biochemische werking van een tumor wordt uitgelegd wat minder omdat er wat meer moeilijke woorden worden gebruikt.

Er wordt dus heel veel glucose verbruikt om om te zetten in lactate(melksuiker ??) voor energie van de vitale organen.

nou ja dit stuk dus..

Quote:
The tumor has another more practical reason not to run its mitochondrial engines. Because it is severely deficient in sulfate, it needs to somehow produce sulfate from an available substrate. A promising candidate is homocysteine thiolactone. But, unfortunately, superoxide is required as a source of reactive oxygen to oxidize the sulfur atom in the homocysteine thiolactone. Furthermore, nitrate is needed to offset the kosmotropic effects of sulfate (otherwise, the blood will become too viscous). But the precursor to nitrate, nitric oxide, reacts with the precursor to sulfate, superoxide, to produce a nasty, highly reactive oxidizing agent called peroxynitrite,26 which will destroy the iron-sulfur containing proteins such as aconitase in the mitochondria.5 It’s really hard to avoid peroxynitrite exposure if a cell is producing both nitric oxide and superoxide. However, it has to produce both of these in order to be able to synthesize sulfate and not gel the blood in the process. A tumor cell is a very good candidate for the job, precisely because it’s not performing other essential duties, so it can “take the heat.”

This is probably the right place to bring up the critical issue about sulfate—it is vitally important as a component of the complex sugar molecules called glycosaminoglycans (GAGs), which decorate the exterior of just about all the cells in the body.9 However, it is both difficult to synthesize and difficult to transport. It plays a powerful role in forming an “exclusion zone” around every cell, to keep out unwanted molecules and protect the cell from ion leaks. It does this by inducing the surrounding water to form a crystalline structure that can almost be described as “liquid ice,28” something that is very similar to the gelled water in gelatin desserts. This special water-structuring effect of sulfate, while affording protection for the cell when a sulfate anion is attached to its matrix, presents a problem when the sulfate anion is in solution in the blood, because the free-flowing blood cannot afford to be gelled. This is why any free sulfate above about 0.3 mM concentration is immediately excreted through the kidneys. And it also explains why the body can be severely depleted in sulfate even while it is excreting sulfate in the urine. I believe the observation that sulfate is routinely excreted in the urine has misled both researchers and medical practitioners into thinking that sulfate can’t possibly be deficient.

Mitochondria are especially susceptible to damage by peroxynitrite, so a cell trying to synthesize sulfate is much better off if it suppresses mitochondrial activities. This means getting by on oxidative glycolysis to supply its ATP energy needs. Plus, ATP needs to be in the cytoplasm, not in the mitochondria, in order to produce PAPS, an activated, energized form of sulfate that can now be attached to complex sugar molecules being constructed in the cytoplasm in order to refurbish the barren extracellular matrix with heparan sulfate proteoglycans and restore the tumor cell to a healthy state.

HEPARIN SULFATE FROM TUMOR CELLS

Heparan sulfate is a remarkable molecule which is present in abundance just outside most of the cells of the body, attached to membranebound proteins called syndecans. It plays an extremely important role in regulating nutrient uptake, signal transduction and ion exchange across the membrane.4 Sulfate depletion in heparan sulfate is associated with a large number of disease states, including diabetes,36,38 autism,37 hypertension,15 digestive disorders25 and kidney disease.40 My colleagues and I have argued that sulfate deficiency, rather than excess cholesterol, is the major factor in heart disease, and that the cardiovascular plaque can be viewed as a factory where cholesterol sulfate is synthesized from precursors derived from LDL and homocysteine.36

Breast cancer cells will respond to exposure to estrogen by multiplying, which is why estrogen receptor antagonists such as Tamoxifen have been used as a hormone therapy option to impede their growth.1 Cancer cells use estrogen to produce estrone sulfate, which they release into the surrounding medium (thereby distributing sulfate to other cells). They also produce lots and lots of heparan sulfate, and, since they produce a sulfatase that detaches sulfate from estrone sulfate,22 I suspect that estrone sulfate becomes a source of sulfate for the synthesis of heparan sulfate.

Prostate cancer has a story similar to breast cancer with regard to sterol sulfate synthesis, except that the tumor makes cholesterol sulfate instead of estrone sulfate.11 Both estrone and cholesterol are sterols (estrone, testosterone, and vitamin D3 are all synthesized from cholesterol). Cholesterol sulfate is the same molecule that is synthesized in the skin upon sunlight exposure. Thus, a plausible way in which sunlight exposure might protect from cancer is by leading to the production of a molecule—cholesterol sulfate— that is sorely needed to maintain the stability of the blood and the general health of the body.

While the tumor cell produces excessive amounts of heparan sulfate, it also produces excessive amounts of heparanase, an enzyme that breaks down heparan sulfate! Tumors that are more aggressive and more likely to metastasize (spread to other tissues) produce more heparanase than more benign tumors.18,3 Tumors, in fact, produce a continual stream of small vesicles called exosomes, which are pinched off from their plasma membrane and distributed via the vasculature.41 These contain syndecans bound to heparan sulfate in their membranes, so the tumor cell is delivering heparan sulfate to other cells on the backs of these exosomes! It appears that the tumor is involved in a program of obsessively making and shipping out heparan sulfate chains.

Why would it do this? As astonishing as this may sound, one is tempted to conclude that a tumor cell is altruistic—it is providing a continual stream of fragments of heparan sulfate to the vasculature with the explicit goal of fixing a severe pathology that would otherwise lead to the death of the organism. Or maybe this is not altruism but rather self-preservation. After all, if the blood supply to the tumor fails, the tumor itself will die.

It was at least thirty years ago when researchers first became aware that tumor tissues have a propensity to break down their extracellular matrix.33 This is not just due to the fact that the cancer cells release heparan-sulfate-containing exosomes as well as enzymes that degrade their surrounding matrix. They are also attacked by enzymes released by the healthy infiltrating stromal cells and by the invasive immune cells. Fragments of the heparan sulfate proteoglycans are broken off, or the protein, syndecan, that the sugar complex is attached to is attacked, or individual sulfate anions are snipped off of the sugar complex.33 All of these different methods of attack take place. The tumor is basically under siege, and it devotes considerable effort to replenishing the matrix that is constantly being degraded by enzymatic attack.

Careful examination of the evidence leads to the inevitable conclusion that the tumor is not the problem. In fact, it is the solution! Sugar is piling up in the blood because the cells are unable to utilize it as fuel. This is a direct consequence of insufficient sulfate in the pancreas, leading to an inability to manufacture insulin,39 and insufficient sulfate in the extracellular matrix of all the cells, leading to insulin resistance.36 The tumor cell can perform a wonderful service by sucking all that sugar out of the blood and replacing it with lactate. Lactate is a beautiful fuel—its negative charge helps to alleviate blood acidification, and it does not glycate blood proteins, such as hemoglobin and ApoB in LDL, a huge problem with glucose and other blood sugars. And the tumor is producing estrone sulfate and heparan sulfate and releasing them into the blood, supplying the essential nutrients that can restore the blood’s stability to prevent blood clots and hemorrhages.

TREATMENT STRATEGIES TARGETING THE CONNECTIVE TISSUES

Researchers argue that the tumor’s ability to break down the surrounding connective tissue that holds the cells in place, a process referred to as “matrix remodeling,” is a key factor in allowing a tumor cell to “break free,” and therefore migrate to some other place in the body. This often has catastrophic consequences, as metastasizing cells can then colonize other organs, and when this occurs the prognosis of death as an outcome is much higher.

Cancers metastasize when the primary tumor sheds cells into the blood, and one way to monitor this is to detect these wandering tumor cells in blood samples.19 Metastasis is the cause of 90 percent of cancer deaths, and about 25 percent of women diagnosed with breast cancer will go on to develop metastasized cancer. In studies in Europe, some cancer patients have been found to already have disseminated primary tumor cells in their bone marrow even before metastasis has occurred.19 These cells clearly break away from the main tumor (became dislodged from the matrix of supporting tissues), and their presence in the bone marrow indicates a poorer prognosis.

The breakdown of the matrix metalloproteins is carried out by specific enzymes called “metalloproteinases” (MMPs). There was initially considerable excitement about the possibility of developing drugs to inhibit these MMPs, called MPIs (metalloprotein inhibitors). In fact, new drugs were rushed to phase II trials without adequate prior study. However, the results were so disappointing that the pharmaceutical industry has now more or less given up on this line of attack.

What went wrong? The main problem was an unexpected side effect of severe muscle pain and weakness. This is remarkably similar to the most common side effect of statin drugs. I have previously described how statin drugs force the skeletal muscle cells to take up excessive amounts of fructose that can no longer be metabolized by the liver due to its inability to produce sufficient cholesterol in the presence of statin drugs.35 The muscle cells also use glycolysis to convert fructose and other sugars into lactate, just like the tumor cells. To the extent that the MPIs interfere with the tumor’s function, the muscle cells have to pick up the slack. Only, unlike a tumor, they have another very important role to play, which is to provide mobility. Their intense exposure to glycating agents like fructose causes damage to their proteins, particularly myoglobin, which, like hemoglobin in RBCs, is highly susceptible to glycation damage. This is what leads to muscle pain and weakness, and it can lead to even more dangerous outcomes like rhabdomyolysis—kidney failure due to the exposure of the kidney glomeruli to toxic debris in the form of damaged myoglobin released by dead and dying muscle cells.16 Indeed, patients with cancer often experience aching muscles and flu-like symptoms in response to cancer treatment programs, and they are at high risk of kidney failure.17

Curiously, a novel treatment for cancer has recently been proposed where the “drug” is a sulfated polysaccharide mimetic: essentially imitating the sulfated fragments that are released from tumor tissues through the activity of heparanase and syndecan shedding.23 The authors conclude with the idea that additional sulfation of this synthetic sugar might further improve its observed effects in reducing angiogenesis (blood vessel growth) and reducing mechanisms that are essential for metastasis.

A huge question that was left unanswered in the paper is whether these synthetic forms are actually accessible to the endothelial cells lining the vasculature such that they can repair the problem of severe sulfate deficiency that likely necessitated the development of a tumor. If not, then patients treated with these new drugs can expect to suffer from the same side effect profile as that experienced following MPI treatment: severe muscle pain and weakness.


 
Ik heb nu geen tijd, maar ga er nog op zitten. Nu hebben belangstellende lezers in ieder geval iets aan de belangrijkste tips in het artikel.

Mike

 
Ja klopt, die boodschap is ook t belangrijkste.

Maar het is ook wel interessant om te weten hoe en waarom.

Het was idd ook wel een heel stuk die ik quote. :-)

 
ik kreeg net de nieuwsbrief van Anneke Bleeker en haar man heeft volgend stuk vertaald:

Combinatie van citroen en

zuiveringszout redt levens

Datum: 23 juni 2014

Door:

Vertaling: Frank Bleeker

Foto: Afkomstig van de website, geplaatst bij artikel

Bron: http://www.realfarmacy.com/lemon-and-baking-soda-combination-saves-lives/

DISCLAIMER:

Dit is een vertaling van een Amerikaans artikel. Hoewel veel van wat betoogd wordt van toepassing is op de wereldwijde

situatie, dienen we ons te realiseren dat sommige van de genoemde voorbeelden vooral betrekking hebben op

omstandigheden in de Verenigde Staten.

Talrijke studies hebben de anti-kanker eigenschappen van citroen bewezen. Citroen

biedt ook andere voordelen, inclusief een krachtig antwoord bij de behandeling van

cystes en tumoren.

Citroenen hebben de macht om kanker te genezen, dit is getest op alle soorten kanker.

Het toevoegen van zuiveringszout maakt het

nog krachtiger, omdat zuiveringszout de

pH tot een normaal niveau brengt.

Citroen heeft ook een krachtige

antimicrobiële werking bij de behandeling

van bacteriële en schimmelinfecties. Het is

effectief in de strijd tegen interne

parasieten en het reguleert de bloeddruk.

Citroen is gunstig voor het zenuwstelsel en

- het is een krachtig antidepressivum, het

vermindert stress en heeft een kalmerende

werking bij zenuwcrises.

Eén van de grootste medicijnproducenten

beweert dat tijdens 20 laboratorium

experimenten die tussen 1970 en nu zijn uitgevoerd werd bewezen dat:

Citroen de kankercellen van 12 verschillende kankersoorten vernietigt. Het

voorkomt metastase van kankercellen en het is 10.000 keer sterker dan medicijnen

als Adriamycine1, chemotherapie en verdovende stoffen.

Wat nog interessanter is, is het feit dat een combinatie van citroenextract en

zuiveringszout uitsluitend de kankercellen vernietigt, zonder nadelige gevolgen

voor gezonde cellen en weefsels.

De experimenten hebben aangetoond dat patiënten met kanker citroensap en een

theelepel bakpoeder zouden moeten drinken. Deze behandeling kan niet de desastreuze

bijwerkingen van chemotherapie genezen.

De beste manier om er zeker van te zijn dat de citroenen biologisch (organic) zijn, is om deze vruchten zelf, in je eigen tuin, of in een pot, te kweken.

Biologische citroenen zijn 100 keer efficiënter dan citroenen die geteeld zijn met

gebruikmaking van kunstmest en behandeling met chemicaliën.

Getuigenissen over natriumbicarbonaat (zuiveringszout) door Dr. Sircus

De volgende getuigenissen uit het natriumbicarbonaat boek belichten deze stof, die

gebruikt wordt als een pijnstiller:

"Na een 4 uur lange stekende hoofdpijn waartegen niets wat ik innam hielp, probeerde

ik natriumbicarbonaat; één theelepel gemengd in een glas water.

Binnen een paar minuten voelde ik de hoofdpijn al afnemen en binnen een uur was het

helemaal verdwenen! Ik heb dit opnieuw geprobeerd toen hoofdpijn een andere keer

opspeelde en het werkte net zo wonderbaarlijk. "

 
Quote:
Miljoenen mensen zijn ten onrechte behandeld voor kanker terwijl ze geen kanker hadden!

Aangetoond wordt dat conventionele kankerbehandelingen een belangrijke oorzaak zijn van kanker!

Kanker is een poging van het lichaam om te overleven, niet een externe aanval!

http://moniquetimmers.nl/miljoenen-mensen-zijn-ten-onrechte-behandeld-voor-kanker-terwijl-ze-geen-kanker-hadden/

 
Om de werkzaamheid te vergroten van natriumbicarbonaat bij kanker en bijv. nierproblemen: zie volgende citaat:
Quote:
For greatest effect in cancer, kidney disease, asthma and diabetes, sodium bicarbonate should always be used with magnesium chloride – providing a powerfully synergistic therapy



http://healyourselfathome.com/HOW/THERAPIES/SODIUM_BICARBONATE/SODIUM_BICARBONATE_MAIN.aspx

 
Opnieuw kom je met disinfo, Tuna. Jaren geleden was een apirientje per dag goed voor het hart en nu deze onzin weer. Wanneet ga je nu eens kritischer kijken naar de links die je hier deelt? Ik heb hiet bijzonder weinig geduld voor.

Mike

 
Hallo Tuna, ja allerlei slechte omstandigheden maken het bloed dikker en aspirine verdunt het. Maar dan kun je net zo goed of beter boterolie voor de vitamine k2, coenzym q10 nemen en meer bloedverdunnende maatregelen nemen: denk aan geaard slapen e.d.

 
“Aspirine per dag” daar kwam Dr. (wizard of) Oz ook al mee, heel Amerika aan de aspirine, mega inkomsten voor Big Pharma en een gevulde portemonnee voor Dr. Mehmet Oz.

De originele aspirine gevonden in Myrthe en Wilg zullen wel genezend zijn.

De Farmaceutische industrie probeert de natuur synthetisch na te maken maak faalt enorm.

 

Forum statistieken

Onderwerpen
4.549
Berichten
554.514
Leden
8.669
Nieuwste lid
BiancKus
Word vaste donateur van dit forum
Terug
Bovenaan